Descomponer en Factores Primos
Calculadora de Factores Primos
Introduzca un número natural y pulse 'Calcular!': Ex.: 0, 1, 2, 4, 16, 28561, etc. |
Resultado detallado:
El número 60 es un número compuesto pues, el número 60 es divisible entre 1, por él mismo y por lo menos por 2, 3 y 5. Así, es posible factorizarlo, o sea, podemos realizar su descomposición en factores primos.
La descomposición en factores primos de 60 en forma de potencias es = 22•3•5. Los factores primos de 60 son 2, 3 y 5. Árbol de factores de 60Una vez que 60 es un número compuesto, podemos construir su árbol de factores como se muestra a continuación (vea explicaciones detalladas al final de esta página): |
Utilice nuestra calculadora de factores primos para averiguar si cualquier número dado es primo o compuesto y, en este caso, descomponer y calcular sus factores. En esta página también aparece una tabla de factores primos de 1 a 1000.
¿Qué es la descomposición en los factores primos?
Definición de Factoración
El proceso de factorización es la descomposición de un número compuesto en un producto de factores primos que, si se multiplican, recrean el número original. Los factores, por definición, son los números que se multiplican para crear otro número. Un número primo es un número entero mayor que uno que se divide sólo por 1 y por sí mismo. Por ejemplo, los únicos divisores de 7 son 1 y 7, entonces 7 es un número primo, mientras que el número 72 tiene divisores derivados de 23•32 como 2, 3, 4, 6, 8, 12, 24 ... y el propio 72, haciendo 72 un número compuesto. Observe que los únicos factores "primos" de 72 son 2 y 3, que son números primos.
Ejemplo de descomposición en factores primos
Vamos a realizar la factorización de 72 paso a paso.
Solución 1
Comenzamos con el menor número primo que divide 72, en este caso 2. Podemos escribir 72 como:
72 = 2 x 36
Ahora buscamos el menor número primo que divide 36. Una vez más, podemos usar 2 y escribir 36 como 2 x 18, para dar.
72 = 2 x 2 x 18
18 también es divisible entre 2 (18 = 2 x 9), entonces tenemos:
72 = 2 x 2 x 2 x 9
9 es divisible entre 3 (9 = 3 x 3), entonces tenemos:
72 = 2 x 2 x 2 x 3 x 3
2, 2, 2, 3 y 3 son todos los números primos, esta es la respuesta.
En resumen, podemos escribir el paso a paso así:
72 = 2 x 36
72 = 2 x 2 x 18
72 = 2 x 2 x 2 x 9
72 = 2 x 2 x 2 x 3 x 3
72 = 2 3 x 3 2 (factorización en la forma exponencial)
Solución 2
Usando un árbol de factores. Paso a paso:
- Encuentre dos factores del número;
- Mire los dos factores y verifique si al menos uno de ellos no es primo;
- Si uno de ellos no es primo, Si uno de ellos no es primo, divídalo por el menor primo;
- Repita el proceso hasta que todos los factores sean primos, es decir, no da más para dividir.
Vea cómo hacer el árbol de factores de 72:
72 / \ 2 36 / \ 2 18 / \ 2 9 / \ 3 3 |
72 es divisible entre 2
36 es divisible entre 2 18 es divisible entre 2 9 es divisible entre 3 3 y 3 son primos → paramos |
Tomando los números de la izquierda y el número más a la derecha de la última línea (divisores) y multiplicándolos entre sí tenemos,
72 = 2 x 2 x 2 x 3 x 3 Observa que estos divisores son los factores primos. También se llaman hojas del árbol de factores. |
Otro ejemplo de descomposición en factores primos
Vea cómo factorizar el número 588:
588 / \ 2 294 / \ 2 147 / \ 3 49 / \ 7 7 |
588 es divisible entre 2 294 es divisible entre 2 147 es divisible entre 3 49 es divisible entre 7 7 y 7 son primos → paramos |
Tomando los números de la izquierda y el número más a la derecha de la última línea (divisores) y multiplicándolos entre sí tenemos, 588 = 2 x 2 x 3 x 7 x 7 |
Tabla de factores primos de 1 a 1000
n | Factorización |
---|---|
2 = | 2 |
3 = | 3 |
4 = | 2•2 |
5 = | 5 |
6 = | 2•3 |
7 = | 7 |
8 = | 2•2•2 |
9 = | 3•3 |
10 = | 2•5 |
11 = | 11 |
12 = | 2•2•3 |
13 = | 13 |
14 = | 2•7 |
15 = | 3•5 |
16 = | 2•2•2•2 |
17 = | 17 |
18 = | 2•3•3 |
19 = | 19 |
20 = | 2•2•5 |
21 = | 3•7 |
22 = | 2•11 |
23 = | 23 |
24 = | 2•2•2•3 |
25 = | 5•5 |
26 = | 2•13 |
27 = | 3•3•3 |
28 = | 2•2•7 |
29 = | 29 |
30 = | 2•3•5 |
31 = | 31 |
32 = | 2•2•2•2•2 |
33 = | 3•11 |
34 = | 2•17 |
35 = | 5•7 |
36 = | 2•2•3•3 |
37 = | 37 |
38 = | 2•19 |
39 = | 3•13 |
40 = | 2•2•2•5 |
41 = | 41 |
42 = | 2•3•7 |
43 = | 43 |
44 = | 2•2•11 |
45 = | 3•3•5 |
46 = | 2•23 |
47 = | 47 |
48 = | 2•2•2•2•3 |
49 = | 7•7 |
50 = | 2•5•5 |
51 = | 3•17 |
52 = | 2•2•13 |
53 = | 53 |
54 = | 2•3•3•3 |
55 = | 5•11 |
56 = | 2•2•2•7 |
57 = | 3•19 |
58 = | 2•29 |
59 = | 59 |
60 = | 2•2•3•5 |
61 = | 61 |
62 = | 2•31 |
63 = | 3•3•7 |
64 = | 2•2•2•2•2•2 |
65 = | 5•13 |
66 = | 2•3•11 |
67 = | 67 |
68 = | 2•2•17 |
69 = | 3•23 |
70 = | 2•5•7 |
71 = | 71 |
72 = | 2•2•2•3•3 |
73 = | 73 |
74 = | 2•37 |
75 = | 3•5•5 |
76 = | 2•2•19 |
77 = | 7•11 |
78 = | 2•3•13 |
79 = | 79 |
80 = | 2•2•2•2•5 |
81 = | 3•3•3•3 |
82 = | 2•41 |
83 = | 83 |
84 = | 2•2•3•7 |
85 = | 5•17 |
86 = | 2•43 |
87 = | 3•29 |
88 = | 2•2•2•11 |
89 = | 89 |
90 = | 2•3•3•5 |
91 = | 7•13 |
92 = | 2•2•23 |
93 = | 3•31 |
94 = | 2•47 |
95 = | 5•19 |
96 = | 2•2•2•2•2•3 |
97 = | 97 |
98 = | 2•7•7 |
99 = | 3•3•11 |
100 = | 2•2•5•5 |
101 = | 101 |
102 = | 2•3•17 |
103 = | 103 |
104 = | 2•2•2•13 |
105 = | 3•5•7 |
106 = | 2•53 |
107 = | 107 |
108 = | 2•2•3•3•3 |
109 = | 109 |
110 = | 2•5•11 |
111 = | 3•37 |
112 = | 2•2•2•2•7 |
113 = | 113 |
114 = | 2•3•19 |
115 = | 5•23 |
116 = | 2•2•29 |
117 = | 3•3•13 |
118 = | 2•59 |
119 = | 7•17 |
120 = | 2•2•2•3•5 |
121 = | 11•11 |
122 = | 2•61 |
123 = | 3•41 |
124 = | 2•2•31 |
125 = | 5•5•5 |
126 = | 2•3•3•7 |
127 = | 127 |
128 = | 2•2•2•2•2•2•2 |
129 = | 3•43 |
130 = | 2•5•13 |
131 = | 131 |
132 = | 2•2•3•11 |
133 = | 7•19 |
134 = | 2•67 |
135 = | 3•3•3•5 |
136 = | 2•2•2•17 |
137 = | 137 |
138 = | 2•3•23 |
139 = | 139 |
140 = | 2•2•5•7 |
141 = | 3•47 |
142 = | 2•71 |
143 = | 11•13 |
144 = | 2•2•2•2•3•3 |
145 = | 5•29 |
146 = | 2•73 |
147 = | 3•7•7 |
148 = | 2•2•37 |
149 = | 149 |
150 = | 2•3•5•5 |
151 = | 151 |
152 = | 2•2•2•19 |
153 = | 3•3•17 |
154 = | 2•7•11 |
155 = | 5•31 |
156 = | 2•2•3•13 |
157 = | 157 |
158 = | 2•79 |
159 = | 3•53 |
160 = | 2•2•2•2•2•5 |
161 = | 7•23 |
162 = | 2•3•3•3•3 |
163 = | 163 |
164 = | 2•2•41 |
165 = | 3•5•11 |
166 = | 2•83 |
167 = | 167 |
168 = | 2•2•2•3•7 |
169 = | 13•13 |
170 = | 2•5•17 |
171 = | 3•3•19 |
172 = | 2•2•43 |
173 = | 173 |
174 = | 2•3•29 |
175 = | 5•5•7 |
176 = | 2•2•2•2•11 |
177 = | 3•59 |
178 = | 2•89 |
179 = | 179 |
180 = | 2•2•3•3•5 |
181 = | 181 |
182 = | 2•7•13 |
183 = | 3•61 |
184 = | 2•2•2•23 |
185 = | 5•37 |
186 = | 2•3•31 |
187 = | 11•17 |
188 = | 2•2•47 |
189 = | 3•3•3•7 |
190 = | 2•5•19 |
191 = | 191 |
192 = | 2•2•2•2•2•2•3 |
193 = | 193 |
194 = | 2•97 |
195 = | 3•5•13 |
196 = | 2•2•7•7 |
197 = | 197 |
198 = | 2•3•3•11 |
199 = | 199 |
200 = | 2•2•2•5•5 |
201 = | 3•67 |
202 = | 2•101 |
203 = | 7•29 |
204 = | 2•2•3•17 |
205 = | 5•41 |
206 = | 2•103 |
207 = | 3•3•23 |
208 = | 2•2•2•2•13 |
209 = | 11•19 |
210 = | 2•3•5•7 |
211 = | 211 |
212 = | 2•2•53 |
213 = | 3•71 |
214 = | 2•107 |
215 = | 5•43 |
216 = | 2•2•2•3•3•3 |
217 = | 7•31 |
218 = | 2•109 |
219 = | 3•73 |
220 = | 2•2•5•11 |
221 = | 13•17 |
222 = | 2•3•37 |
223 = | 223 |
224 = | 2•2•2•2•2•7 |
225 = | 3•3•5•5 |
226 = | 2•113 |
227 = | 227 |
228 = | 2•2•3•19 |
229 = | 229 |
230 = | 2•5•23 |
231 = | 3•7•11 |
232 = | 2•2•2•29 |
233 = | 233 |
234 = | 2•3•3•13 |
235 = | 5•47 |
236 = | 2•2•59 |
237 = | 3•79 |
238 = | 2•7•17 |
239 = | 239 |
240 = | 2•2•2•2•3•5 |
241 = | 241 |
242 = | 2•11•11 |
243 = | 3•3•3•3•3 |
244 = | 2•2•61 |
245 = | 5•7•7 |
246 = | 2•3•41 |
247 = | 13•19 |
248 = | 2•2•2•31 |
249 = | 3•83 |
250 = | 2•5•5•5 |
n | Factorización |
---|---|
251 = | 251 |
252 = | 2•2•3•3•7 |
253 = | 11•23 |
254 = | 2•127 |
255 = | 3•5•17 |
256 = | 2•2•2•2•2•2•2•2 |
257 = | 257 |
258 = | 2•3•43 |
259 = | 7•37 |
260 = | 2•2•5•13 |
261 = | 3•3•29 |
262 = | 2•131 |
263 = | 263 |
264 = | 2•2•2•3•11 |
265 = | 5•53 |
266 = | 2•7•19 |
267 = | 3•89 |
268 = | 2•2•67 |
269 = | 269 |
270 = | 2•3•3•3•5 |
271 = | 271 |
272 = | 2•2•2•2•17 |
273 = | 3•7•13 |
274 = | 2•137 |
275 = | 5•5•11 |
276 = | 2•2•3•23 |
277 = | 277 |
278 = | 2•139 |
279 = | 3•3•31 |
280 = | 2•2•2•5•7 |
281 = | 281 |
282 = | 2•3•47 |
283 = | 283 |
284 = | 2•2•71 |
285 = | 3•5•19 |
286 = | 2•11•13 |
287 = | 7•41 |
288 = | 2•2•2•2•2•3•3 |
289 = | 17•17 |
290 = | 2•5•29 |
291 = | 3•97 |
292 = | 2•2•73 |
293 = | 293 |
294 = | 2•3•7•7 |
295 = | 5•59 |
296 = | 2•2•2•37 |
297 = | 3•3•3•11 |
298 = | 2•149 |
299 = | 13•23 |
300 = | 2•2•3•5•5 |
301 = | 7•43 |
302 = | 2•151 |
303 = | 3•101 |
304 = | 2•2•2•2•19 |
305 = | 5•61 |
306 = | 2•3•3•17 |
307 = | 307 |
308 = | 2•2•7•11 |
309 = | 3•103 |
310 = | 2•5•31 |
311 = | 311 |
312 = | 2•2•2•3•13 |
313 = | 313 |
314 = | 2•157 |
315 = | 3•3•5•7 |
316 = | 2•2•79 |
317 = | 317 |
318 = | 2•3•53 |
319 = | 11•29 |
320 = | 2•2•2•2•2•2•5 |
321 = | 3•107 |
322 = | 2•7•23 |
323 = | 17•19 |
324 = | 2•2•3•3•3•3 |
325 = | 5•5•13 |
326 = | 2•163 |
327 = | 3•109 |
328 = | 2•2•2•41 |
329 = | 7•47 |
330 = | 2•3•5•11 |
331 = | 331 |
332 = | 2•2•83 |
333 = | 3•3•37 |
334 = | 2•167 |
335 = | 5•67 |
336 = | 2•2•2•2•3•7 |
337 = | 337 |
338 = | 2•13•13 |
339 = | 3•113 |
340 = | 2•2•5•17 |
341 = | 11•31 |
342 = | 2•3•3•19 |
343 = | 7•7•7 |
344 = | 2•2•2•43 |
345 = | 3•5•23 |
346 = | 2•173 |
347 = | 347 |
348 = | 2•2•3•29 |
349 = | 349 |
350 = | 2•5•5•7 |
351 = | 3•3•3•13 |
352 = | 2•2•2•2•2•11 |
353 = | 353 |
354 = | 2•3•59 |
355 = | 5•71 |
356 = | 2•2•89 |
357 = | 3•7•17 |
358 = | 2•179 |
359 = | 359 |
360 = | 2•2•2•3•3•5 |
361 = | 19•19 |
362 = | 2•181 |
363 = | 3•11•11 |
364 = | 2•2•7•13 |
365 = | 5•73 |
366 = | 2•3•61 |
367 = | 367 |
368 = | 2•2•2•2•23 |
369 = | 3•3•41 |
370 = | 2•5•37 |
371 = | 7•53 |
372 = | 2•2•3•31 |
373 = | 373 |
374 = | 2•11•17 |
375 = | 3•5•5•5 |
376 = | 2•2•2•47 |
377 = | 13•29 |
378 = | 2•3•3•3•7 |
379 = | 379 |
380 = | 2•2•5•19 |
381 = | 3•127 |
382 = | 2•191 |
383 = | 383 |
384 = | 2•2•2•2•2•2•2•3 |
385 = | 5•7•11 |
386 = | 2•193 |
387 = | 3•3•43 |
388 = | 2•2•97 |
389 = | 389 |
390 = | 2•3•5•13 |
391 = | 17•23 |
392 = | 2•2•2•7•7 |
393 = | 3•131 |
394 = | 2•197 |
395 = | 5•79 |
396 = | 2•2•3•3•11 |
397 = | 397 |
398 = | 2•199 |
399 = | 3•7•19 |
400 = | 2•2•2•2•5•5 |
401 = | 401 |
402 = | 2•3•67 |
403 = | 13•31 |
404 = | 2•2•101 |
405 = | 3•3•3•3•5 |
406 = | 2•7•29 |
407 = | 11•37 |
408 = | 2•2•2•3•17 |
409 = | 409 |
410 = | 2•5•41 |
411 = | 3•137 |
412 = | 2•2•103 |
413 = | 7•59 |
414 = | 2•3•3•23 |
415 = | 5•83 |
416 = | 2•2•2•2•2•13 |
417 = | 3•139 |
418 = | 2•11•19 |
419 = | 419 |
420 = | 2•2•3•5•7 |
421 = | 421 |
422 = | 2•211 |
423 = | 3•3•47 |
424 = | 2•2•2•53 |
425 = | 5•5•17 |
426 = | 2•3•71 |
427 = | 7•61 |
428 = | 2•2•107 |
429 = | 3•11•13 |
430 = | 2•5•43 |
431 = | 431 |
432 = | 2•2•2•2•3•3•3 |
433 = | 433 |
434 = | 2•7•31 |
435 = | 3•5•29 |
436 = | 2•2•109 |
437 = | 19•23 |
438 = | 2•3•73 |
439 = | 439 |
440 = | 2•2•2•5•11 |
441 = | 3•3•7•7 |
442 = | 2•13•17 |
443 = | 443 |
444 = | 2•2•3•37 |
445 = | 5•89 |
446 = | 2•223 |
447 = | 3•149 |
448 = | 2•2•2•2•2•2•7 |
449 = | 449 |
450 = | 2•3•3•5•5 |
451 = | 11•41 |
452 = | 2•2•113 |
453 = | 3•151 |
454 = | 2•227 |
455 = | 5•7•13 |
456 = | 2•2•2•3•19 |
457 = | 457 |
458 = | 2•229 |
459 = | 3•3•3•17 |
460 = | 2•2•5•23 |
461 = | 461 |
462 = | 2•3•7•11 |
463 = | 463 |
464 = | 2•2•2•2•29 |
465 = | 3•5•31 |
466 = | 2•233 |
467 = | 467 |
468 = | 2•2•3•3•13 |
469 = | 7•67 |
470 = | 2•5•47 |
471 = | 3•157 |
472 = | 2•2•2•59 |
473 = | 11•43 |
474 = | 2•3•79 |
475 = | 5•5•19 |
476 = | 2•2•7•17 |
477 = | 3•3•53 |
478 = | 2•239 |
479 = | 479 |
480 = | 2•2•2•2•2•3•5 |
481 = | 13•37 |
482 = | 2•241 |
483 = | 3•7•23 |
484 = | 2•2•11•11 |
485 = | 5•97 |
486 = | 2•3•3•3•3•3 |
487 = | 487 |
488 = | 2•2•2•61 |
489 = | 3•163 |
490 = | 2•5•7•7 |
491 = | 491 |
492 = | 2•2•3•41 |
493 = | 17•29 |
494 = | 2•13•19 |
495 = | 3•3•5•11 |
496 = | 2•2•2•2•31 |
497 = | 7•71 |
498 = | 2•3•83 |
499 = | 499 |
500 = | 2•2•5•5•5 |
n | Factorización |
---|---|
501 = | 3•167 |
502 = | 2•251 |
503 = | 503 |
504 = | 2•2•2•3•3•7 |
505 = | 5•101 |
506 = | 2•11•23 |
507 = | 3•13•13 |
508 = | 2•2•127 |
509 = | 509 |
510 = | 2•3•5•17 |
511 = | 7•73 |
512 = | 2•2•2•2•2•2•2•2•2 |
513 = | 3•3•3•19 |
514 = | 2•257 |
515 = | 5•103 |
516 = | 2•2•3•43 |
517 = | 11•47 |
518 = | 2•7•37 |
519 = | 3•173 |
520 = | 2•2•2•5•13 |
521 = | 521 |
522 = | 2•3•3•29 |
523 = | 523 |
524 = | 2•2•131 |
525 = | 3•5•5•7 |
526 = | 2•263 |
527 = | 17•31 |
528 = | 2•2•2•2•3•11 |
529 = | 23•23 |
530 = | 2•5•53 |
531 = | 3•3•59 |
532 = | 2•2•7•19 |
533 = | 13•41 |
534 = | 2•3•89 |
535 = | 5•107 |
536 = | 2•2•2•67 |
537 = | 3•179 |
538 = | 2•269 |
539 = | 7•7•11 |
540 = | 2•2•3•3•3•5 |
541 = | 541 |
542 = | 2•271 |
543 = | 3•181 |
544 = | 2•2•2•2•2•17 |
545 = | 5•109 |
546 = | 2•3•7•13 |
547 = | 547 |
548 = | 2•2•137 |
549 = | 3•3•61 |
550 = | 2•5•5•11 |
551 = | 19•29 |
552 = | 2•2•2•3•23 |
553 = | 7•79 |
554 = | 2•277 |
555 = | 3•5•37 |
556 = | 2•2•139 |
557 = | 557 |
558 = | 2•3•3•31 |
559 = | 13•43 |
560 = | 2•2•2•2•5•7 |
561 = | 3•11•17 |
562 = | 2•281 |
563 = | 563 |
564 = | 2•2•3•47 |
565 = | 5•113 |
566 = | 2•283 |
567 = | 3•3•3•3•7 |
568 = | 2•2•2•71 |
569 = | 569 |
570 = | 2•3•5•19 |
571 = | 571 |
572 = | 2•2•11•13 |
573 = | 3•191 |
574 = | 2•7•41 |
575 = | 5•5•23 |
576 = | 2•2•2•2•2•2•3•3 |
577 = | 577 |
578 = | 2•17•17 |
579 = | 3•193 |
580 = | 2•2•5•29 |
581 = | 7•83 |
582 = | 2•3•97 |
583 = | 11•53 |
584 = | 2•2•2•73 |
585 = | 3•3•5•13 |
586 = | 2•293 |
587 = | 587 |
588 = | 2•2•3•7•7 |
589 = | 19•31 |
590 = | 2•5•59 |
591 = | 3•197 |
592 = | 2•2•2•2•37 |
593 = | 593 |
594 = | 2•3•3•3•11 |
595 = | 5•7•17 |
596 = | 2•2•149 |
597 = | 3•199 |
598 = | 2•13•23 |
599 = | 599 |
600 = | 2•2•2•3•5•5 |
601 = | 601 |
602 = | 2•7•43 |
603 = | 3•3•67 |
604 = | 2•2•151 |
605 = | 5•11•11 |
606 = | 2•3•101 |
607 = | 607 |
608 = | 2•2•2•2•2•19 |
609 = | 3•7•29 |
610 = | 2•5•61 |
611 = | 13•47 |
612 = | 2•2•3•3•17 |
613 = | 613 |
614 = | 2•307 |
615 = | 3•5•41 |
616 = | 2•2•2•7•11 |
617 = | 617 |
618 = | 2•3•103 |
619 = | 619 |
620 = | 2•2•5•31 |
621 = | 3•3•3•23 |
622 = | 2•311 |
623 = | 7•89 |
624 = | 2•2•2•2•3•13 |
625 = | 5•5•5•5 |
626 = | 2•313 |
627 = | 3•11•19 |
628 = | 2•2•157 |
629 = | 17•37 |
630 = | 2•3•3•5•7 |
631 = | 631 |
632 = | 2•2•2•79 |
633 = | 3•211 |
634 = | 2•317 |
635 = | 5•127 |
636 = | 2•2•3•53 |
637 = | 7•7•13 |
638 = | 2•11•29 |
639 = | 3•3•71 |
640 = | 2•2•2•2•2•2•2•5 |
641 = | 641 |
642 = | 2•3•107 |
643 = | 643 |
644 = | 2•2•7•23 |
645 = | 3•5•43 |
646 = | 2•17•19 |
647 = | 647 |
648 = | 2•2•2•3•3•3•3 |
649 = | 11•59 |
650 = | 2•5•5•13 |
651 = | 3•7•31 |
652 = | 2•2•163 |
653 = | 653 |
654 = | 2•3•109 |
655 = | 5•131 |
656 = | 2•2•2•2•41 |
657 = | 3•3•73 |
658 = | 2•7•47 |
659 = | 659 |
660 = | 2•2•3•5•11 |
661 = | 661 |
662 = | 2•331 |
663 = | 3•13•17 |
664 = | 2•2•2•83 |
665 = | 5•7•19 |
666 = | 2•3•3•37 |
667 = | 23•29 |
668 = | 2•2•167 |
669 = | 3•223 |
670 = | 2•5•67 |
671 = | 11•61 |
672 = | 2•2•2•2•2•3•7 |
673 = | 673 |
674 = | 2•337 |
675 = | 3•3•3•5•5 |
676 = | 2•2•13•13 |
677 = | 677 |
678 = | 2•3•113 |
679 = | 7•97 |
680 = | 2•2•2•5•17 |
681 = | 3•227 |
682 = | 2•11•31 |
683 = | 683 |
684 = | 2•2•3•3•19 |
685 = | 5•137 |
686 = | 2•7•7•7 |
687 = | 3•229 |
688 = | 2•2•2•2•43 |
689 = | 13•53 |
690 = | 2•3•5•23 |
691 = | 691 |
692 = | 2•2•173 |
693 = | 3•3•7•11 |
694 = | 2•347 |
695 = | 5•139 |
696 = | 2•2•2•3•29 |
697 = | 17•41 |
698 = | 2•349 |
699 = | 3•233 |
700 = | 2•2•5•5•7 |
701 = | 701 |
702 = | 2•3•3•3•13 |
703 = | 19•37 |
704 = | 2•2•2•2•2•2•11 |
705 = | 3•5•47 |
706 = | 2•353 |
707 = | 7•101 |
708 = | 2•2•3•59 |
709 = | 709 |
710 = | 2•5•71 |
711 = | 3•3•79 |
712 = | 2•2•2•89 |
713 = | 23•31 |
714 = | 2•3•7•17 |
715 = | 5•11•13 |
716 = | 2•2•179 |
717 = | 3•239 |
718 = | 2•359 |
719 = | 719 |
720 = | 2•2•2•2•3•3•5 |
721 = | 7•103 |
722 = | 2•19•19 |
723 = | 3•241 |
724 = | 2•2•181 |
725 = | 5•5•29 |
726 = | 2•3•11•11 |
727 = | 727 |
728 = | 2•2•2•7•13 |
729 = | 3•3•3•3•3•3 |
730 = | 2•5•73 |
731 = | 17•43 |
732 = | 2•2•3•61 |
733 = | 733 |
734 = | 2•367 |
735 = | 3•5•7•7 |
736 = | 2•2•2•2•2•23 |
737 = | 11•67 |
738 = | 2•3•3•41 |
739 = | 739 |
740 = | 2•2•5•37 |
741 = | 3•13•19 |
742 = | 2•7•53 |
743 = | 743 |
744 = | 2•2•2•3•31 |
745 = | 5•149 |
746 = | 2•373 |
747 = | 3•3•83 |
748 = | 2•2•11•17 |
749 = | 7•107 |
750 = | 2•3•5•5•5 |
n | Factorización |
---|---|
751 = | 751 |
752 = | 2•2•2•2•47 |
753 = | 3•251 |
754 = | 2•13•29 |
755 = | 5•151 |
756 = | 2•2•3•3•3•7 |
757 = | 757 |
758 = | 2•379 |
759 = | 3•11•23 |
760 = | 2•2•2•5•19 |
761 = | 761 |
762 = | 2•3•127 |
763 = | 7•109 |
764 = | 2•2•191 |
765 = | 3•3•5•17 |
766 = | 2•383 |
767 = | 13•59 |
768 = | 2•2•2•2•2•2•2•2•3 |
769 = | 769 |
770 = | 2•5•7•11 |
771 = | 3•257 |
772 = | 2•2•193 |
773 = | 773 |
774 = | 2•3•3•43 |
775 = | 5•5•31 |
776 = | 2•2•2•97 |
777 = | 3•7•37 |
778 = | 2•389 |
779 = | 19•41 |
780 = | 2•2•3•5•13 |
781 = | 11•71 |
782 = | 2•17•23 |
783 = | 3•3•3•29 |
784 = | 2•2•2•2•7•7 |
785 = | 5•157 |
786 = | 2•3•131 |
787 = | 787 |
788 = | 2•2•197 |
789 = | 3•263 |
790 = | 2•5•79 |
791 = | 7•113 |
792 = | 2•2•2•3•3•11 |
793 = | 13•61 |
794 = | 2•397 |
795 = | 3•5•53 |
796 = | 2•2•199 |
797 = | 797 |
798 = | 2•3•7•19 |
799 = | 17•47 |
800 = | 2•2•2•2•2•5•5 |
801 = | 3•3•89 |
802 = | 2•401 |
803 = | 11•73 |
804 = | 2•2•3•67 |
805 = | 5•7•23 |
806 = | 2•13•31 |
807 = | 3•269 |
808 = | 2•2•2•101 |
809 = | 809 |
810 = | 2•3•3•3•3•5 |
811 = | 811 |
812 = | 2•2•7•29 |
813 = | 3•271 |
814 = | 2•11•37 |
815 = | 5•163 |
816 = | 2•2•2•2•3•17 |
817 = | 19•43 |
818 = | 2•409 |
819 = | 3•3•7•13 |
820 = | 2•2•5•41 |
821 = | 821 |
822 = | 2•3•137 |
823 = | 823 |
824 = | 2•2•2•103 |
825 = | 3•5•5•11 |
826 = | 2•7•59 |
827 = | 827 |
828 = | 2•2•3•3•23 |
829 = | 829 |
830 = | 2•5•83 |
831 = | 3•277 |
832 = | 2•2•2•2•2•2•13 |
833 = | 7•7•17 |
834 = | 2•3•139 |
835 = | 5•167 |
836 = | 2•2•11•19 |
837 = | 3•3•3•31 |
838 = | 2•419 |
839 = | 839 |
840 = | 2•2•2•3•5•7 |
841 = | 29•29 |
842 = | 2•421 |
843 = | 3•281 |
844 = | 2•2•211 |
845 = | 5•13•13 |
846 = | 2•3•3•47 |
847 = | 7•11•11 |
848 = | 2•2•2•2•53 |
849 = | 3•283 |
850 = | 2•5•5•17 |
851 = | 23•37 |
852 = | 2•2•3•71 |
853 = | 853 |
854 = | 2•7•61 |
855 = | 3•3•5•19 |
856 = | 2•2•2•107 |
857 = | 857 |
858 = | 2•3•11•13 |
859 = | 859 |
860 = | 2•2•5•43 |
861 = | 3•7•41 |
862 = | 2•431 |
863 = | 863 |
864 = | 2•2•2•2•2•3•3•3 |
865 = | 5•173 |
866 = | 2•433 |
867 = | 3•17•17 |
868 = | 2•2•7•31 |
869 = | 11•79 |
870 = | 2•3•5•29 |
871 = | 13•67 |
872 = | 2•2•2•109 |
873 = | 3•3•97 |
874 = | 2•19•23 |
875 = | 5•5•5•7 |
876 = | 2•2•3•73 |
877 = | 877 |
878 = | 2•439 |
879 = | 3•293 |
880 = | 2•2•2•2•5•11 |
881 = | 881 |
882 = | 2•3•3•7•7 |
883 = | 883 |
884 = | 2•2•13•17 |
885 = | 3•5•59 |
886 = | 2•443 |
887 = | 887 |
888 = | 2•2•2•3•37 |
889 = | 7•127 |
890 = | 2•5•89 |
891 = | 3•3•3•3•11 |
892 = | 2•2•223 |
893 = | 19•47 |
894 = | 2•3•149 |
895 = | 5•179 |
896 = | 2•2•2•2•2•2•2•7 |
897 = | 3•13•23 |
898 = | 2•449 |
899 = | 29•31 |
900 = | 2•2•3•3•5•5 |
901 = | 17•53 |
902 = | 2•11•41 |
903 = | 3•7•43 |
904 = | 2•2•2•113 |
905 = | 5•181 |
906 = | 2•3•151 |
907 = | 907 |
908 = | 2•2•227 |
909 = | 3•3•101 |
910 = | 2•5•7•13 |
911 = | 911 |
912 = | 2•2•2•2•3•19 |
913 = | 11•83 |
914 = | 2•457 |
915 = | 3•5•61 |
916 = | 2•2•229 |
917 = | 7•131 |
918 = | 2•3•3•3•17 |
919 = | 919 |
920 = | 2•2•2•5•23 |
921 = | 3•307 |
922 = | 2•461 |
923 = | 13•71 |
924 = | 2•2•3•7•11 |
925 = | 5•5•37 |
926 = | 2•463 |
927 = | 3•3•103 |
928 = | 2•2•2•2•2•29 |
929 = | 929 |
930 = | 2•3•5•31 |
931 = | 7•7•19 |
932 = | 2•2•233 |
933 = | 3•311 |
934 = | 2•467 |
935 = | 5•11•17 |
936 = | 2•2•2•3•3•13 |
937 = | 937 |
938 = | 2•7•67 |
939 = | 3•313 |
940 = | 2•2•5•47 |
941 = | 941 |
942 = | 2•3•157 |
943 = | 23•41 |
944 = | 2•2•2•2•59 |
945 = | 3•3•3•5•7 |
946 = | 2•11•43 |
947 = | 947 |
948 = | 2•2•3•79 |
949 = | 13•73 |
950 = | 2•5•5•19 |
951 = | 3•317 |
952 = | 2•2•2•7•17 |
953 = | 953 |
954 = | 2•3•3•53 |
955 = | 5•191 |
956 = | 2•2•239 |
957 = | 3•11•29 |
958 = | 2•479 |
959 = | 7•137 |
960 = | 2•2•2•2•2•2•3•5 |
961 = | 31•31 |
962 = | 2•13•37 |
963 = | 3•3•107 |
964 = | 2•2•241 |
965 = | 5•193 |
966 = | 2•3•7•23 |
967 = | 967 |
968 = | 2•2•2•11•11 |
969 = | 3•17•19 |
970 = | 2•5•97 |
971 = | 971 |
972 = | 2•2•3•3•3•3•3 |
973 = | 7•139 |
974 = | 2•487 |
975 = | 3•5•5•13 |
976 = | 2•2•2•2•61 |
977 = | 977 |
978 = | 2•3•163 |
979 = | 11•89 |
980 = | 2•2•5•7•7 |
981 = | 3•3•109 |
982 = | 2•491 |
983 = | 983 |
984 = | 2•2•2•3•41 |
985 = | 5•197 |
986 = | 2•17•29 |
987 = | 3•7•47 |
988 = | 2•2•13•19 |
989 = | 23•43 |
990 = | 2•3•3•5•11 |
991 = | 991 |
992 = | 2•2•2•2•2•31 |
993 = | 3•331 |
994 = | 2•7•71 |
995 = | 5•199 |
996 = | 2•2•3•83 |
997 = | 997 |
998 = | 2•499 |
999 = | 3•3•3•37 |
1000 = | 2•2•2•5•5•5 |
Referencias:
- [1] Why is the number one not prime?
- [2] 1 and 0: Prime or Composite?
- [3] Decomposição em fatores primos
Ejemplos de descomposición en factores primos
- Fatores primos de 93
- Fatores primos de 1872
- Fatores primos de 397
- Fatores primos de 947
- Fatores primos de 2835
- Fatores primos de 383
- Fatores primos de 417
- Fatores primos de 168
- Fatores primos de 2304
- Fatores primos de 336
- Fatores primos de 1728
- Fatores primos de 1134
- Fatores primos de 144
- Fatores primos de 10
- Fatores primos de 5184
- Fatores primos de 576
- Fatores primos de 133
- Fatores primos de 56
- Fatores primos de 592
- Fatores primos de 960
- Fatores primos de 720
- Fatores primos de 288
- Fatores primos de 40
- Fatores primos de 80
- Fatores primos de 740
- Fatores primos de 1155
- Fatores primos de 3888
- Fatores primos de 1134
- Fatores primos de 1183
- Fatores primos de 3075
- Fatores primos de 1960
- Fatores primos de 54
- Fatores primos de 689
- Fatores primos de 2268
- Fatores primos de 437
- Fatores primos de 60
- Fatores primos de 476
- Fatores primos de 762
- Fatores primos de 2000
- Fatores primos de 15000
- Fatores primos de 3584
- Fatores primos de 13310
- Fatores primos de 1452
- Fatores primos de 210
- Fatores primos de 2016
- Fatores primos de 498
- Fatores primos de 4608
- Fatores primos de 840
- Fatores primos de 306
- Fatores primos de 1008
- Fatores primos de 756
- Fatores primos de 972
- Fatores primos de 572
- Fatores primos de 810