Descomponer en Factores Primos
Calculadora de Factores Primos
Introduzca un número natural y pulse 'Calcular!': Ex.: 0, 1, 2, 4, 16, 28561, etc. |
Resultado detallado:
El número 60 es un número compuesto pues, el número 60 es divisible entre 1, por él mismo y por lo menos por 2, 3 y 5. Así, es posible factorizarlo, o sea, podemos realizar su descomposición en factores primos.
La descomposición en factores primos de 60 en forma de potencias es = 22•3•5. Los factores primos de 60 son 2, 3 y 5. Árbol de factores de 60Una vez que 60 es un número compuesto, podemos construir su árbol de factores como se muestra a continuación (vea explicaciones detalladas al final de esta página): |
Utilice nuestra calculadora de factores primos para averiguar si cualquier número dado es primo o compuesto y, en este caso, descomponer y calcular sus factores. En esta página también aparece una tabla de factores primos de 1 a 1000.
¿Qué es la descomposición en los factores primos?
Definición de Factoración
El proceso de factorización es la descomposición de un número compuesto en un producto de factores primos que, si se multiplican, recrean el número original. Los factores, por definición, son los números que se multiplican para crear otro número. Un número primo es un número entero mayor que uno que se divide sólo por 1 y por sí mismo. Por ejemplo, los únicos divisores de 7 son 1 y 7, entonces 7 es un número primo, mientras que el número 72 tiene divisores derivados de 23•32 como 2, 3, 4, 6, 8, 12, 24 ... y el propio 72, haciendo 72 un número compuesto. Observe que los únicos factores "primos" de 72 son 2 y 3, que son números primos.
Ejemplo de descomposición en factores primos
Vamos a realizar la factorización de 72 paso a paso.
Solución 1
Comenzamos con el menor número primo que divide 72, en este caso 2. Podemos escribir 72 como:
72 = 2 x 36
Ahora buscamos el menor número primo que divide 36. Una vez más, podemos usar 2 y escribir 36 como 2 x 18, para dar.
72 = 2 x 2 x 18
18 también es divisible entre 2 (18 = 2 x 9), entonces tenemos:
72 = 2 x 2 x 2 x 9
9 es divisible entre 3 (9 = 3 x 3), entonces tenemos:
72 = 2 x 2 x 2 x 3 x 3
2, 2, 2, 3 y 3 son todos los números primos, esta es la respuesta.
En resumen, podemos escribir el paso a paso así:
72 = 2 x 36
72 = 2 x 2 x 18
72 = 2 x 2 x 2 x 9
72 = 2 x 2 x 2 x 3 x 3
72 = 2 3 x 3 2 (factorización en la forma exponencial)
Solución 2
Usando un árbol de factores. Paso a paso:
- Encuentre dos factores del número;
- Mire los dos factores y verifique si al menos uno de ellos no es primo;
- Si uno de ellos no es primo, Si uno de ellos no es primo, divídalo por el menor primo;
- Repita el proceso hasta que todos los factores sean primos, es decir, no da más para dividir.
Vea cómo hacer el árbol de factores de 72:
72 / \ 2 36 / \ 2 18 / \ 2 9 / \ 3 3 |
72 es divisible entre 2
36 es divisible entre 2 18 es divisible entre 2 9 es divisible entre 3 3 y 3 son primos → paramos |
Tomando los números de la izquierda y el número más a la derecha de la última línea (divisores) y multiplicándolos entre sí tenemos,
72 = 2 x 2 x 2 x 3 x 3 Observa que estos divisores son los factores primos. También se llaman hojas del árbol de factores. |
Otro ejemplo de descomposición en factores primos
Vea cómo factorizar el número 588:
588 / \ 2 294 / \ 2 147 / \ 3 49 / \ 7 7 |
588 es divisible entre 2 294 es divisible entre 2 147 es divisible entre 3 49 es divisible entre 7 7 y 7 son primos → paramos |
Tomando los números de la izquierda y el número más a la derecha de la última línea (divisores) y multiplicándolos entre sí tenemos, 588 = 2 x 2 x 3 x 7 x 7 |
Tabla de factores primos de 1 a 1000
n | Factorización |
---|---|
2 = | 2 |
3 = | 3 |
4 = | 2•2 |
5 = | 5 |
6 = | 2•3 |
7 = | 7 |
8 = | 2•2•2 |
9 = | 3•3 |
10 = | 2•5 |
11 = | 11 |
12 = | 2•2•3 |
13 = | 13 |
14 = | 2•7 |
15 = | 3•5 |
16 = | 2•2•2•2 |
17 = | 17 |
18 = | 2•3•3 |
19 = | 19 |
20 = | 2•2•5 |
21 = | 3•7 |
22 = | 2•11 |
23 = | 23 |
24 = | 2•2•2•3 |
25 = | 5•5 |
26 = | 2•13 |
27 = | 3•3•3 |
28 = | 2•2•7 |
29 = | 29 |
30 = | 2•3•5 |
31 = | 31 |
32 = | 2•2•2•2•2 |
33 = | 3•11 |
34 = | 2•17 |
35 = | 5•7 |
36 = | 2•2•3•3 |
37 = | 37 |
38 = | 2•19 |
39 = | 3•13 |
40 = | 2•2•2•5 |
41 = | 41 |
42 = | 2•3•7 |
43 = | 43 |
44 = | 2•2•11 |
45 = | 3•3•5 |
46 = | 2•23 |
47 = | 47 |
48 = | 2•2•2•2•3 |
49 = | 7•7 |
50 = | 2•5•5 |
51 = | 3•17 |
52 = | 2•2•13 |
53 = | 53 |
54 = | 2•3•3•3 |
55 = | 5•11 |
56 = | 2•2•2•7 |
57 = | 3•19 |
58 = | 2•29 |
59 = | 59 |
60 = | 2•2•3•5 |
61 = | 61 |
62 = | 2•31 |
63 = | 3•3•7 |
64 = | 2•2•2•2•2•2 |
65 = | 5•13 |
66 = | 2•3•11 |
67 = | 67 |
68 = | 2•2•17 |
69 = | 3•23 |
70 = | 2•5•7 |
71 = | 71 |
72 = | 2•2•2•3•3 |
73 = | 73 |
74 = | 2•37 |
75 = | 3•5•5 |
76 = | 2•2•19 |
77 = | 7•11 |
78 = | 2•3•13 |
79 = | 79 |
80 = | 2•2•2•2•5 |
81 = | 3•3•3•3 |
82 = | 2•41 |
83 = | 83 |
84 = | 2•2•3•7 |
85 = | 5•17 |
86 = | 2•43 |
87 = | 3•29 |
88 = | 2•2•2•11 |
89 = | 89 |
90 = | 2•3•3•5 |
91 = | 7•13 |
92 = | 2•2•23 |
93 = | 3•31 |
94 = | 2•47 |
95 = | 5•19 |
96 = | 2•2•2•2•2•3 |
97 = | 97 |
98 = | 2•7•7 |
99 = | 3•3•11 |
100 = | 2•2•5•5 |
101 = | 101 |
102 = | 2•3•17 |
103 = | 103 |
104 = | 2•2•2•13 |
105 = | 3•5•7 |
106 = | 2•53 |
107 = | 107 |
108 = | 2•2•3•3•3 |
109 = | 109 |
110 = | 2•5•11 |
111 = | 3•37 |
112 = | 2•2•2•2•7 |
113 = | 113 |
114 = | 2•3•19 |
115 = | 5•23 |
116 = | 2•2•29 |
117 = | 3•3•13 |
118 = | 2•59 |
119 = | 7•17 |
120 = | 2•2•2•3•5 |
121 = | 11•11 |
122 = | 2•61 |
123 = | 3•41 |
124 = | 2•2•31 |
125 = | 5•5•5 |
126 = | 2•3•3•7 |
127 = | 127 |
128 = | 2•2•2•2•2•2•2 |
129 = | 3•43 |
130 = | 2•5•13 |
131 = | 131 |
132 = | 2•2•3•11 |
133 = | 7•19 |
134 = | 2•67 |
135 = | 3•3•3•5 |
136 = | 2•2•2•17 |
137 = | 137 |
138 = | 2•3•23 |
139 = | 139 |
140 = | 2•2•5•7 |
141 = | 3•47 |
142 = | 2•71 |
143 = | 11•13 |
144 = | 2•2•2•2•3•3 |
145 = | 5•29 |
146 = | 2•73 |
147 = | 3•7•7 |
148 = | 2•2•37 |
149 = | 149 |
150 = | 2•3•5•5 |
151 = | 151 |
152 = | 2•2•2•19 |
153 = | 3•3•17 |
154 = | 2•7•11 |
155 = | 5•31 |
156 = | 2•2•3•13 |
157 = | 157 |
158 = | 2•79 |
159 = | 3•53 |
160 = | 2•2•2•2•2•5 |
161 = | 7•23 |
162 = | 2•3•3•3•3 |
163 = | 163 |
164 = | 2•2•41 |
165 = | 3•5•11 |
166 = | 2•83 |
167 = | 167 |
168 = | 2•2•2•3•7 |
169 = | 13•13 |
170 = | 2•5•17 |
171 = | 3•3•19 |
172 = | 2•2•43 |
173 = | 173 |
174 = | 2•3•29 |
175 = | 5•5•7 |
176 = | 2•2•2•2•11 |
177 = | 3•59 |
178 = | 2•89 |
179 = | 179 |
180 = | 2•2•3•3•5 |
181 = | 181 |
182 = | 2•7•13 |
183 = | 3•61 |
184 = | 2•2•2•23 |
185 = | 5•37 |
186 = | 2•3•31 |
187 = | 11•17 |
188 = | 2•2•47 |
189 = | 3•3•3•7 |
190 = | 2•5•19 |
191 = | 191 |
192 = | 2•2•2•2•2•2•3 |
193 = | 193 |
194 = | 2•97 |
195 = | 3•5•13 |
196 = | 2•2•7•7 |
197 = | 197 |
198 = | 2•3•3•11 |
199 = | 199 |
200 = | 2•2•2•5•5 |
201 = | 3•67 |
202 = | 2•101 |
203 = | 7•29 |
204 = | 2•2•3•17 |
205 = | 5•41 |
206 = | 2•103 |
207 = | 3•3•23 |
208 = | 2•2•2•2•13 |
209 = | 11•19 |
210 = | 2•3•5•7 |
211 = | 211 |
212 = | 2•2•53 |
213 = | 3•71 |
214 = | 2•107 |
215 = | 5•43 |
216 = | 2•2•2•3•3•3 |
217 = | 7•31 |
218 = | 2•109 |
219 = | 3•73 |
220 = | 2•2•5•11 |
221 = | 13•17 |
222 = | 2•3•37 |
223 = | 223 |
224 = | 2•2•2•2•2•7 |
225 = | 3•3•5•5 |
226 = | 2•113 |
227 = | 227 |
228 = | 2•2•3•19 |
229 = | 229 |
230 = | 2•5•23 |
231 = | 3•7•11 |
232 = | 2•2•2•29 |
233 = | 233 |
234 = | 2•3•3•13 |
235 = | 5•47 |
236 = | 2•2•59 |
237 = | 3•79 |
238 = | 2•7•17 |
239 = | 239 |
240 = | 2•2•2•2•3•5 |
241 = | 241 |
242 = | 2•11•11 |
243 = | 3•3•3•3•3 |
244 = | 2•2•61 |
245 = | 5•7•7 |
246 = | 2•3•41 |
247 = | 13•19 |
248 = | 2•2•2•31 |
249 = | 3•83 |
250 = | 2•5•5•5 |
n | Factorización |
---|---|
251 = | 251 |
252 = | 2•2•3•3•7 |
253 = | 11•23 |
254 = | 2•127 |
255 = | 3•5•17 |
256 = | 2•2•2•2•2•2•2•2 |
257 = | 257 |
258 = | 2•3•43 |
259 = | 7•37 |
260 = | 2•2•5•13 |
261 = | 3•3•29 |
262 = | 2•131 |
263 = | 263 |
264 = | 2•2•2•3•11 |
265 = | 5•53 |
266 = | 2•7•19 |
267 = | 3•89 |
268 = | 2•2•67 |
269 = | 269 |
270 = | 2•3•3•3•5 |
271 = | 271 |
272 = | 2•2•2•2•17 |
273 = | 3•7•13 |
274 = | 2•137 |
275 = | 5•5•11 |
276 = | 2•2•3•23 |
277 = | 277 |
278 = | 2•139 |
279 = | 3•3•31 |
280 = | 2•2•2•5•7 |
281 = | 281 |
282 = | 2•3•47 |
283 = | 283 |
284 = | 2•2•71 |
285 = | 3•5•19 |
286 = | 2•11•13 |
287 = | 7•41 |
288 = | 2•2•2•2•2•3•3 |
289 = | 17•17 |
290 = | 2•5•29 |
291 = | 3•97 |
292 = | 2•2•73 |
293 = | 293 |
294 = | 2•3•7•7 |
295 = | 5•59 |
296 = | 2•2•2•37 |
297 = | 3•3•3•11 |
298 = | 2•149 |
299 = | 13•23 |
300 = | 2•2•3•5•5 |
301 = | 7•43 |
302 = | 2•151 |
303 = | 3•101 |
304 = | 2•2•2•2•19 |
305 = | 5•61 |
306 = | 2•3•3•17 |
307 = | 307 |
308 = | 2•2•7•11 |
309 = | 3•103 |
310 = | 2•5•31 |
311 = | 311 |
312 = | 2•2•2•3•13 |
313 = | 313 |
314 = | 2•157 |
315 = | 3•3•5•7 |
316 = | 2•2•79 |
317 = | 317 |
318 = | 2•3•53 |
319 = | 11•29 |
320 = | 2•2•2•2•2•2•5 |
321 = | 3•107 |
322 = | 2•7•23 |
323 = | 17•19 |
324 = | 2•2•3•3•3•3 |
325 = | 5•5•13 |
326 = | 2•163 |
327 = | 3•109 |
328 = | 2•2•2•41 |
329 = | 7•47 |
330 = | 2•3•5•11 |
331 = | 331 |
332 = | 2•2•83 |
333 = | 3•3•37 |
334 = | 2•167 |
335 = | 5•67 |
336 = | 2•2•2•2•3•7 |
337 = | 337 |
338 = | 2•13•13 |
339 = | 3•113 |
340 = | 2•2•5•17 |
341 = | 11•31 |
342 = | 2•3•3•19 |
343 = | 7•7•7 |
344 = | 2•2•2•43 |
345 = | 3•5•23 |
346 = | 2•173 |
347 = | 347 |
348 = | 2•2•3•29 |
349 = | 349 |
350 = | 2•5•5•7 |
351 = | 3•3•3•13 |
352 = | 2•2•2•2•2•11 |
353 = | 353 |
354 = | 2•3•59 |
355 = | 5•71 |
356 = | 2•2•89 |
357 = | 3•7•17 |
358 = | 2•179 |
359 = | 359 |
360 = | 2•2•2•3•3•5 |
361 = | 19•19 |
362 = | 2•181 |
363 = | 3•11•11 |
364 = | 2•2•7•13 |
365 = | 5•73 |
366 = | 2•3•61 |
367 = | 367 |
368 = | 2•2•2•2•23 |
369 = | 3•3•41 |
370 = | 2•5•37 |
371 = | 7•53 |
372 = | 2•2•3•31 |
373 = | 373 |
374 = | 2•11•17 |
375 = | 3•5•5•5 |
376 = | 2•2•2•47 |
377 = | 13•29 |
378 = | 2•3•3•3•7 |
379 = | 379 |
380 = | 2•2•5•19 |
381 = | 3•127 |
382 = | 2•191 |
383 = | 383 |
384 = | 2•2•2•2•2•2•2•3 |
385 = | 5•7•11 |
386 = | 2•193 |
387 = | 3•3•43 |
388 = | 2•2•97 |
389 = | 389 |
390 = | 2•3•5•13 |
391 = | 17•23 |
392 = | 2•2•2•7•7 |
393 = | 3•131 |
394 = | 2•197 |
395 = | 5•79 |
396 = | 2•2•3•3•11 |
397 = | 397 |
398 = | 2•199 |
399 = | 3•7•19 |
400 = | 2•2•2•2•5•5 |
401 = | 401 |
402 = | 2•3•67 |
403 = | 13•31 |
404 = | 2•2•101 |
405 = | 3•3•3•3•5 |
406 = | 2•7•29 |
407 = | 11•37 |
408 = | 2•2•2•3•17 |
409 = | 409 |
410 = | 2•5•41 |
411 = | 3•137 |
412 = | 2•2•103 |
413 = | 7•59 |
414 = | 2•3•3•23 |
415 = | 5•83 |
416 = | 2•2•2•2•2•13 |
417 = | 3•139 |
418 = | 2•11•19 |
419 = | 419 |
420 = | 2•2•3•5•7 |
421 = | 421 |
422 = | 2•211 |
423 = | 3•3•47 |
424 = | 2•2•2•53 |
425 = | 5•5•17 |
426 = | 2•3•71 |
427 = | 7•61 |
428 = | 2•2•107 |
429 = | 3•11•13 |
430 = | 2•5•43 |
431 = | 431 |
432 = | 2•2•2•2•3•3•3 |
433 = | 433 |
434 = | 2•7•31 |
435 = | 3•5•29 |
436 = | 2•2•109 |
437 = | 19•23 |
438 = | 2•3•73 |
439 = | 439 |
440 = | 2•2•2•5•11 |
441 = | 3•3•7•7 |
442 = | 2•13•17 |
443 = | 443 |
444 = | 2•2•3•37 |
445 = | 5•89 |
446 = | 2•223 |
447 = | 3•149 |
448 = | 2•2•2•2•2•2•7 |
449 = | 449 |
450 = | 2•3•3•5•5 |
451 = | 11•41 |
452 = | 2•2•113 |
453 = | 3•151 |
454 = | 2•227 |
455 = | 5•7•13 |
456 = | 2•2•2•3•19 |
457 = | 457 |
458 = | 2•229 |
459 = | 3•3•3•17 |
460 = | 2•2•5•23 |
461 = | 461 |
462 = | 2•3•7•11 |
463 = | 463 |
464 = | 2•2•2•2•29 |
465 = | 3•5•31 |
466 = | 2•233 |
467 = | 467 |
468 = | 2•2•3•3•13 |
469 = | 7•67 |
470 = | 2•5•47 |
471 = | 3•157 |
472 = | 2•2•2•59 |
473 = | 11•43 |
474 = | 2•3•79 |
475 = | 5•5•19 |
476 = | 2•2•7•17 |
477 = | 3•3•53 |
478 = | 2•239 |
479 = | 479 |
480 = | 2•2•2•2•2•3•5 |
481 = | 13•37 |
482 = | 2•241 |
483 = | 3•7•23 |
484 = | 2•2•11•11 |
485 = | 5•97 |
486 = | 2•3•3•3•3•3 |
487 = | 487 |
488 = | 2•2•2•61 |
489 = | 3•163 |
490 = | 2•5•7•7 |
491 = | 491 |
492 = | 2•2•3•41 |
493 = | 17•29 |
494 = | 2•13•19 |
495 = | 3•3•5•11 |
496 = | 2•2•2•2•31 |
497 = | 7•71 |
498 = | 2•3•83 |
499 = | 499 |
500 = | 2•2•5•5•5 |
n | Factorización |
---|---|
501 = | 3•167 |
502 = | 2•251 |
503 = | 503 |
504 = | 2•2•2•3•3•7 |
505 = | 5•101 |
506 = | 2•11•23 |
507 = | 3•13•13 |
508 = | 2•2•127 |
509 = | 509 |
510 = | 2•3•5•17 |
511 = | 7•73 |
512 = | 2•2•2•2•2•2•2•2•2 |
513 = | 3•3•3•19 |
514 = | 2•257 |
515 = | 5•103 |
516 = | 2•2•3•43 |
517 = | 11•47 |
518 = | 2•7•37 |
519 = | 3•173 |
520 = | 2•2•2•5•13 |
521 = | 521 |
522 = | 2•3•3•29 |
523 = | 523 |
524 = | 2•2•131 |
525 = | 3•5•5•7 |
526 = | 2•263 |
527 = | 17•31 |
528 = | 2•2•2•2•3•11 |
529 = | 23•23 |
530 = | 2•5•53 |
531 = | 3•3•59 |
532 = | 2•2•7•19 |
533 = | 13•41 |
534 = | 2•3•89 |
535 = | 5•107 |
536 = | 2•2•2•67 |
537 = | 3•179 |
538 = | 2•269 |
539 = | 7•7•11 |
540 = | 2•2•3•3•3•5 |
541 = | 541 |
542 = | 2•271 |
543 = | 3•181 |
544 = | 2•2•2•2•2•17 |
545 = | 5•109 |
546 = | 2•3•7•13 |
547 = | 547 |
548 = | 2•2•137 |
549 = | 3•3•61 |
550 = | 2•5•5•11 |
551 = | 19•29 |
552 = | 2•2•2•3•23 |
553 = | 7•79 |
554 = | 2•277 |
555 = | 3•5•37 |
556 = | 2•2•139 |
557 = | 557 |
558 = | 2•3•3•31 |
559 = | 13•43 |
560 = | 2•2•2•2•5•7 |
561 = | 3•11•17 |
562 = | 2•281 |
563 = | 563 |
564 = | 2•2•3•47 |
565 = | 5•113 |
566 = | 2•283 |
567 = | 3•3•3•3•7 |
568 = | 2•2•2•71 |
569 = | 569 |
570 = | 2•3•5•19 |
571 = | 571 |
572 = | 2•2•11•13 |
573 = | 3•191 |
574 = | 2•7•41 |
575 = | 5•5•23 |
576 = | 2•2•2•2•2•2•3•3 |
577 = | 577 |
578 = | 2•17•17 |
579 = | 3•193 |
580 = | 2•2•5•29 |
581 = | 7•83 |
582 = | 2•3•97 |
583 = | 11•53 |
584 = | 2•2•2•73 |
585 = | 3•3•5•13 |
586 = | 2•293 |
587 = | 587 |
588 = | 2•2•3•7•7 |
589 = | 19•31 |
590 = | 2•5•59 |
591 = | 3•197 |
592 = | 2•2•2•2•37 |
593 = | 593 |
594 = | 2•3•3•3•11 |
595 = | 5•7•17 |
596 = | 2•2•149 |
597 = | 3•199 |
598 = | 2•13•23 |
599 = | 599 |
600 = | 2•2•2•3•5•5 |
601 = | 601 |
602 = | 2•7•43 |
603 = | 3•3•67 |
604 = | 2•2•151 |
605 = | 5•11•11 |
606 = | 2•3•101 |
607 = | 607 |
608 = | 2•2•2•2•2•19 |
609 = | 3•7•29 |
610 = | 2•5•61 |
611 = | 13•47 |
612 = | 2•2•3•3•17 |
613 = | 613 |
614 = | 2•307 |
615 = | 3•5•41 |
616 = | 2•2•2•7•11 |
617 = | 617 |
618 = | 2•3•103 |
619 = | 619 |
620 = | 2•2•5•31 |
621 = | 3•3•3•23 |
622 = | 2•311 |
623 = | 7•89 |
624 = | 2•2•2•2•3•13 |
625 = | 5•5•5•5 |
626 = | 2•313 |
627 = | 3•11•19 |
628 = | 2•2•157 |
629 = | 17•37 |
630 = | 2•3•3•5•7 |
631 = | 631 |
632 = | 2•2•2•79 |
633 = | 3•211 |
634 = | 2•317 |
635 = | 5•127 |
636 = | 2•2•3•53 |
637 = | 7•7•13 |
638 = | 2•11•29 |
639 = | 3•3•71 |
640 = | 2•2•2•2•2•2•2•5 |
641 = | 641 |
642 = | 2•3•107 |
643 = | 643 |
644 = | 2•2•7•23 |
645 = | 3•5•43 |
646 = | 2•17•19 |
647 = | 647 |
648 = | 2•2•2•3•3•3•3 |
649 = | 11•59 |
650 = | 2•5•5•13 |
651 = | 3•7•31 |
652 = | 2•2•163 |
653 = | 653 |
654 = | 2•3•109 |
655 = | 5•131 |
656 = | 2•2•2•2•41 |
657 = | 3•3•73 |
658 = | 2•7•47 |
659 = | 659 |
660 = | 2•2•3•5•11 |
661 = | 661 |
662 = | 2•331 |
663 = | 3•13•17 |
664 = | 2•2•2•83 |
665 = | 5•7•19 |
666 = | 2•3•3•37 |
667 = | 23•29 |
668 = | 2•2•167 |
669 = | 3•223 |
670 = | 2•5•67 |
671 = | 11•61 |
672 = | 2•2•2•2•2•3•7 |
673 = | 673 |
674 = | 2•337 |
675 = | 3•3•3•5•5 |
676 = | 2•2•13•13 |
677 = | 677 |
678 = | 2•3•113 |
679 = | 7•97 |
680 = | 2•2•2•5•17 |
681 = | 3•227 |
682 = | 2•11•31 |
683 = | 683 |
684 = | 2•2•3•3•19 |
685 = | 5•137 |
686 = | 2•7•7•7 |
687 = | 3•229 |
688 = | 2•2•2•2•43 |
689 = | 13•53 |
690 = | 2•3•5•23 |
691 = | 691 |
692 = | 2•2•173 |
693 = | 3•3•7•11 |
694 = | 2•347 |
695 = | 5•139 |
696 = | 2•2•2•3•29 |
697 = | 17•41 |
698 = | 2•349 |
699 = | 3•233 |
700 = | 2•2•5•5•7 |
701 = | 701 |
702 = | 2•3•3•3•13 |
703 = | 19•37 |
704 = | 2•2•2•2•2•2•11 |
705 = | 3•5•47 |
706 = | 2•353 |
707 = | 7•101 |
708 = | 2•2•3•59 |
709 = | 709 |
710 = | 2•5•71 |
711 = | 3•3•79 |
712 = | 2•2•2•89 |
713 = | 23•31 |
714 = | 2•3•7•17 |
715 = | 5•11•13 |
716 = | 2•2•179 |
717 = | 3•239 |
718 = | 2•359 |
719 = | 719 |
720 = | 2•2•2•2•3•3•5 |
721 = | 7•103 |
722 = | 2•19•19 |
723 = | 3•241 |
724 = | 2•2•181 |
725 = | 5•5•29 |
726 = | 2•3•11•11 |
727 = | 727 |
728 = | 2•2•2•7•13 |
729 = | 3•3•3•3•3•3 |
730 = | 2•5•73 |
731 = | 17•43 |
732 = | 2•2•3•61 |
733 = | 733 |
734 = | 2•367 |
735 = | 3•5•7•7 |
736 = | 2•2•2•2•2•23 |
737 = | 11•67 |
738 = | 2•3•3•41 |
739 = | 739 |
740 = | 2•2•5•37 |
741 = | 3•13•19 |
742 = | 2•7•53 |
743 = | 743 |
744 = | 2•2•2•3•31 |
745 = | 5•149 |
746 = | 2•373 |
747 = | 3•3•83 |
748 = | 2•2•11•17 |
749 = | 7•107 |
750 = | 2•3•5•5•5 |
n | Factorización |
---|---|
751 = | 751 |
752 = | 2•2•2•2•47 |
753 = | 3•251 |
754 = | 2•13•29 |
755 = | 5•151 |
756 = | 2•2•3•3•3•7 |
757 = | 757 |
758 = | 2•379 |
759 = | 3•11•23 |
760 = | 2•2•2•5•19 |
761 = | 761 |
762 = | 2•3•127 |
763 = | 7•109 |
764 = | 2•2•191 |
765 = | 3•3•5•17 |
766 = | 2•383 |
767 = | 13•59 |
768 = | 2•2•2•2•2•2•2•2•3 |
769 = | 769 |
770 = | 2•5•7•11 |
771 = | 3•257 |
772 = | 2•2•193 |
773 = | 773 |
774 = | 2•3•3•43 |
775 = | 5•5•31 |
776 = | 2•2•2•97 |
777 = | 3•7•37 |
778 = | 2•389 |
779 = | 19•41 |
780 = | 2•2•3•5•13 |
781 = | 11•71 |
782 = | 2•17•23 |
783 = | 3•3•3•29 |
784 = | 2•2•2•2•7•7 |
785 = | 5•157 |
786 = | 2•3•131 |
787 = | 787 |
788 = | 2•2•197 |
789 = | 3•263 |
790 = | 2•5•79 |
791 = | 7•113 |
792 = | 2•2•2•3•3•11 |
793 = | 13•61 |
794 = | 2•397 |
795 = | 3•5•53 |
796 = | 2•2•199 |
797 = | 797 |
798 = | 2•3•7•19 |
799 = | 17•47 |
800 = | 2•2•2•2•2•5•5 |
801 = | 3•3•89 |
802 = | 2•401 |
803 = | 11•73 |
804 = | 2•2•3•67 |
805 = | 5•7•23 |
806 = | 2•13•31 |
807 = | 3•269 |
808 = | 2•2•2•101 |
809 = | 809 |
810 = | 2•3•3•3•3•5 |
811 = | 811 |
812 = | 2•2•7•29 |
813 = | 3•271 |
814 = | 2•11•37 |
815 = | 5•163 |
816 = | 2•2•2•2•3•17 |
817 = | 19•43 |
818 = | 2•409 |
819 = | 3•3•7•13 |
820 = | 2•2•5•41 |
821 = | 821 |
822 = | 2•3•137 |
823 = | 823 |
824 = | 2•2•2•103 |
825 = | 3•5•5•11 |
826 = | 2•7•59 |
827 = | 827 |
828 = | 2•2•3•3•23 |
829 = | 829 |
830 = | 2•5•83 |
831 = | 3•277 |
832 = | 2•2•2•2•2•2•13 |
833 = | 7•7•17 |
834 = | 2•3•139 |
835 = | 5•167 |
836 = | 2•2•11•19 |
837 = | 3•3•3•31 |
838 = | 2•419 |
839 = | 839 |
840 = | 2•2•2•3•5•7 |
841 = | 29•29 |
842 = | 2•421 |
843 = | 3•281 |
844 = | 2•2•211 |
845 = | 5•13•13 |
846 = | 2•3•3•47 |
847 = | 7•11•11 |
848 = | 2•2•2•2•53 |
849 = | 3•283 |
850 = | 2•5•5•17 |
851 = | 23•37 |
852 = | 2•2•3•71 |
853 = | 853 |
854 = | 2•7•61 |
855 = | 3•3•5•19 |
856 = | 2•2•2•107 |
857 = | 857 |
858 = | 2•3•11•13 |
859 = | 859 |
860 = | 2•2•5•43 |
861 = | 3•7•41 |
862 = | 2•431 |
863 = | 863 |
864 = | 2•2•2•2•2•3•3•3 |
865 = | 5•173 |
866 = | 2•433 |
867 = | 3•17•17 |
868 = | 2•2•7•31 |
869 = | 11•79 |
870 = | 2•3•5•29 |
871 = | 13•67 |
872 = | 2•2•2•109 |
873 = | 3•3•97 |
874 = | 2•19•23 |
875 = | 5•5•5•7 |
876 = | 2•2•3•73 |
877 = | 877 |
878 = | 2•439 |
879 = | 3•293 |
880 = | 2•2•2•2•5•11 |
881 = | 881 |
882 = | 2•3•3•7•7 |
883 = | 883 |
884 = | 2•2•13•17 |
885 = | 3•5•59 |
886 = | 2•443 |
887 = | 887 |
888 = | 2•2•2•3•37 |
889 = | 7•127 |
890 = | 2•5•89 |
891 = | 3•3•3•3•11 |
892 = | 2•2•223 |
893 = | 19•47 |
894 = | 2•3•149 |
895 = | 5•179 |
896 = | 2•2•2•2•2•2•2•7 |
897 = | 3•13•23 |
898 = | 2•449 |
899 = | 29•31 |
900 = | 2•2•3•3•5•5 |
901 = | 17•53 |
902 = | 2•11•41 |
903 = | 3•7•43 |
904 = | 2•2•2•113 |
905 = | 5•181 |
906 = | 2•3•151 |
907 = | 907 |
908 = | 2•2•227 |
909 = | 3•3•101 |
910 = | 2•5•7•13 |
911 = | 911 |
912 = | 2•2•2•2•3•19 |
913 = | 11•83 |
914 = | 2•457 |
915 = | 3•5•61 |
916 = | 2•2•229 |
917 = | 7•131 |
918 = | 2•3•3•3•17 |
919 = | 919 |
920 = | 2•2•2•5•23 |
921 = | 3•307 |
922 = | 2•461 |
923 = | 13•71 |
924 = | 2•2•3•7•11 |
925 = | 5•5•37 |
926 = | 2•463 |
927 = | 3•3•103 |
928 = | 2•2•2•2•2•29 |
929 = | 929 |
930 = | 2•3•5•31 |
931 = | 7•7•19 |
932 = | 2•2•233 |
933 = | 3•311 |
934 = | 2•467 |
935 = | 5•11•17 |
936 = | 2•2•2•3•3•13 |
937 = | 937 |
938 = | 2•7•67 |
939 = | 3•313 |
940 = | 2•2•5•47 |
941 = | 941 |
942 = | 2•3•157 |
943 = | 23•41 |
944 = | 2•2•2•2•59 |
945 = | 3•3•3•5•7 |
946 = | 2•11•43 |
947 = | 947 |
948 = | 2•2•3•79 |
949 = | 13•73 |
950 = | 2•5•5•19 |
951 = | 3•317 |
952 = | 2•2•2•7•17 |
953 = | 953 |
954 = | 2•3•3•53 |
955 = | 5•191 |
956 = | 2•2•239 |
957 = | 3•11•29 |
958 = | 2•479 |
959 = | 7•137 |
960 = | 2•2•2•2•2•2•3•5 |
961 = | 31•31 |
962 = | 2•13•37 |
963 = | 3•3•107 |
964 = | 2•2•241 |
965 = | 5•193 |
966 = | 2•3•7•23 |
967 = | 967 |
968 = | 2•2•2•11•11 |
969 = | 3•17•19 |
970 = | 2•5•97 |
971 = | 971 |
972 = | 2•2•3•3•3•3•3 |
973 = | 7•139 |
974 = | 2•487 |
975 = | 3•5•5•13 |
976 = | 2•2•2•2•61 |
977 = | 977 |
978 = | 2•3•163 |
979 = | 11•89 |
980 = | 2•2•5•7•7 |
981 = | 3•3•109 |
982 = | 2•491 |
983 = | 983 |
984 = | 2•2•2•3•41 |
985 = | 5•197 |
986 = | 2•17•29 |
987 = | 3•7•47 |
988 = | 2•2•13•19 |
989 = | 23•43 |
990 = | 2•3•3•5•11 |
991 = | 991 |
992 = | 2•2•2•2•2•31 |
993 = | 3•331 |
994 = | 2•7•71 |
995 = | 5•199 |
996 = | 2•2•3•83 |
997 = | 997 |
998 = | 2•499 |
999 = | 3•3•3•37 |
1000 = | 2•2•2•5•5•5 |
Referencias:
- [1] Why is the number one not prime?
- [2] 1 and 0: Prime or Composite?
- [3] Decomposição em fatores primos
Ejemplos de descomposición en factores primos
- Fatores primos de 2268
- Fatores primos de 840
- Fatores primos de 486
- Fatores primos de 3000
- Fatores primos de 2916
- Fatores primos de 19965
- Fatores primos de 224
- Fatores primos de 56
- Fatores primos de 25920
- Fatores primos de 613
- Fatores primos de 140
- Fatores primos de 353
- Fatores primos de 4004
- Fatores primos de 1200
- Fatores primos de 378
- Fatores primos de 3024
- Fatores primos de 448
- Fatores primos de 1625
- Fatores primos de 953
- Fatores primos de 17280
- Fatores primos de 5120
- Fatores primos de 996
- Fatores primos de 818
- Fatores primos de 2884
- Fatores primos de 3240
- Fatores primos de 1600
- Fatores primos de 261
- Fatores primos de 904
- Fatores primos de 30030
- Fatores primos de 1215
- Fatores primos de 75
- Fatores primos de 2197
- Fatores primos de 3430
- Fatores primos de 160
- Fatores primos de 864
- Fatores primos de 32955
- Fatores primos de 310
- Fatores primos de 1225
- Fatores primos de 7168
- Fatores primos de 12000
- Fatores primos de 12096
- Fatores primos de 2884
- Fatores primos de 4235
- Fatores primos de 896
- Fatores primos de 72
- Fatores primos de 360
- Fatores primos de 717
- Fatores primos de 32
- Fatores primos de 840
- Fatores primos de 50
- Fatores primos de 224
- Fatores primos de 983
- Fatores primos de 1568
- Fatores primos de 1134